p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.166D4, C25.91C22, C23.749C24, C24.596C23, (C24×C4)⋊3C2, (C22×C4)⋊53D4, C24⋊3C4⋊29C2, C23.631(C2×D4), C22.56C22≀C2, C23.249(C4○D4), C23.34D4⋊63C2, (C22×C4).259C23, (C23×C4).649C22, C23.8Q8⋊146C2, C22.459(C22×D4), C23.23D4⋊112C2, C2.C42⋊47C22, (C22×D4).308C22, C22⋊4(C22.D4), C2.92(C22.19C24), (C2×C4⋊C4)⋊42C22, C2.32(C2×C22≀C2), (C2×C4).1204(C2×D4), (C2×C22≀C2).16C2, (C2×C22⋊C4)⋊35C22, C22.590(C2×C4○D4), (C2×C22.D4)⋊45C2, C2.44(C2×C22.D4), SmallGroup(128,1581)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.166D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=fbf=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=ce-1 >
Subgroups: 1028 in 551 conjugacy classes, 132 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C22.D4, C23×C4, C23×C4, C22×D4, C22×D4, C25, C24⋊3C4, C23.34D4, C23.8Q8, C23.23D4, C2×C22≀C2, C2×C22.D4, C24×C4, C24.166D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C22.D4, C22×D4, C2×C4○D4, C2×C22≀C2, C2×C22.D4, C22.19C24, C24.166D4
(1 8)(2 29)(3 6)(4 31)(5 14)(7 16)(9 24)(10 26)(11 22)(12 28)(13 32)(15 30)(17 25)(18 21)(19 27)(20 23)
(1 3)(2 29)(4 31)(5 14)(6 8)(7 16)(9 24)(10 12)(11 22)(13 15)(17 25)(18 20)(19 27)(21 23)(26 28)(30 32)
(1 13)(2 14)(3 15)(4 16)(5 29)(6 30)(7 31)(8 32)(9 17)(10 18)(11 19)(12 20)(21 26)(22 27)(23 28)(24 25)
(1 30)(2 31)(3 32)(4 29)(5 16)(6 13)(7 14)(8 15)(9 22)(10 23)(11 24)(12 21)(17 27)(18 28)(19 25)(20 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 17)(2 12)(3 19)(4 10)(5 28)(6 22)(7 26)(8 24)(9 13)(11 15)(14 20)(16 18)(21 31)(23 29)(25 32)(27 30)
G:=sub<Sym(32)| (1,8)(2,29)(3,6)(4,31)(5,14)(7,16)(9,24)(10,26)(11,22)(12,28)(13,32)(15,30)(17,25)(18,21)(19,27)(20,23), (1,3)(2,29)(4,31)(5,14)(6,8)(7,16)(9,24)(10,12)(11,22)(13,15)(17,25)(18,20)(19,27)(21,23)(26,28)(30,32), (1,13)(2,14)(3,15)(4,16)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(21,26)(22,27)(23,28)(24,25), (1,30)(2,31)(3,32)(4,29)(5,16)(6,13)(7,14)(8,15)(9,22)(10,23)(11,24)(12,21)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17)(2,12)(3,19)(4,10)(5,28)(6,22)(7,26)(8,24)(9,13)(11,15)(14,20)(16,18)(21,31)(23,29)(25,32)(27,30)>;
G:=Group( (1,8)(2,29)(3,6)(4,31)(5,14)(7,16)(9,24)(10,26)(11,22)(12,28)(13,32)(15,30)(17,25)(18,21)(19,27)(20,23), (1,3)(2,29)(4,31)(5,14)(6,8)(7,16)(9,24)(10,12)(11,22)(13,15)(17,25)(18,20)(19,27)(21,23)(26,28)(30,32), (1,13)(2,14)(3,15)(4,16)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(21,26)(22,27)(23,28)(24,25), (1,30)(2,31)(3,32)(4,29)(5,16)(6,13)(7,14)(8,15)(9,22)(10,23)(11,24)(12,21)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17)(2,12)(3,19)(4,10)(5,28)(6,22)(7,26)(8,24)(9,13)(11,15)(14,20)(16,18)(21,31)(23,29)(25,32)(27,30) );
G=PermutationGroup([[(1,8),(2,29),(3,6),(4,31),(5,14),(7,16),(9,24),(10,26),(11,22),(12,28),(13,32),(15,30),(17,25),(18,21),(19,27),(20,23)], [(1,3),(2,29),(4,31),(5,14),(6,8),(7,16),(9,24),(10,12),(11,22),(13,15),(17,25),(18,20),(19,27),(21,23),(26,28),(30,32)], [(1,13),(2,14),(3,15),(4,16),(5,29),(6,30),(7,31),(8,32),(9,17),(10,18),(11,19),(12,20),(21,26),(22,27),(23,28),(24,25)], [(1,30),(2,31),(3,32),(4,29),(5,16),(6,13),(7,14),(8,15),(9,22),(10,23),(11,24),(12,21),(17,27),(18,28),(19,25),(20,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,17),(2,12),(3,19),(4,10),(5,28),(6,22),(7,26),(8,24),(9,13),(11,15),(14,20),(16,18),(21,31),(23,29),(25,32),(27,30)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 2T | 4A | ··· | 4P | 4Q | ··· | 4W |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 8 | 2 | ··· | 2 | 8 | ··· | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 |
kernel | C24.166D4 | C24⋊3C4 | C23.34D4 | C23.8Q8 | C23.23D4 | C2×C22≀C2 | C2×C22.D4 | C24×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 1 | 2 | 4 | 4 | 1 | 2 | 1 | 8 | 4 | 16 |
Matrix representation of C24.166D4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C24.166D4 in GAP, Magma, Sage, TeX
C_2^4._{166}D_4
% in TeX
G:=Group("C2^4.166D4");
// GroupNames label
G:=SmallGroup(128,1581);
// by ID
G=gap.SmallGroup(128,1581);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,100,2019]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*e^-1>;
// generators/relations